General Description The CD4066BM/CD4066BC is a quad bilateral switch in- tended for the transmission or multiplexing of analog or digi- tal signals. It is pin-for-pin compatible with CD4016BM/ CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.	eq:stremely low 'OFF'' 0.1 nA (typ.) switch leakage
$eq:spectral_$	 Applications Analog signal switching/multiplexing Signal gating Squelch control Chopper Modulator/Demodulator Commutating switch Digital signal switching/multiplexing CMOS logic implementation Analog-to-digital/digital-to-analog conversion Digital control of frequency, impedance, phase, and analog-signal-gain

©1995 National Semiconductor Corporation TL/F/5665

Order Number CD4066B

CONTROL

RRD-B30M105/Printed in U. S. A.

TL/F/5665-1

OUT/IN

7

₽vss

14 V_{DD}

13 CONTROL A

12 CONTROL D

N/OUT

OUT/IN

OUT/IN

IN/OUT

10

Dual-In-Line Package

SW A

SW D

SW B

Top View

IN/OUT

IN/OUT

CONTROL B

CONTROL C

v_{ss}

OUT/IN _____

٦

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Recommended Operating Conditions (Note 2)

COnditions (Note 2)	
Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A)	
CD4066BM	-55°C to +125°C
CD4066BC	-40°C to +85°C

DC Electrical Characteristics CD4066BM (Note 2)

Symbol	Parameter	Conditions	-55°C		+ 25°C			+ 125°C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	
I _{DD}	Quiescent Device Current	V _{DD} =5V		0.25		0.01	0.25		7.5	μA
		V _{DD} =10V		0.5		0.01	0.5		15	μA
		V _{DD} =15V		1.0		0.01	1.0		30	μΑ
SIGNAL I	NPUTS AND OUTPUTS									
R _{ON}	"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2}$								
		$V_{\rm C} = V_{\rm DD}, V_{\rm IS} = V_{\rm SS}^2$ to $V_{\rm DD}$								
		V _{DD} =5V		800		270	1050		1300	Ω
		$V_{DD} = 10V$		310		120	400		550	Ω
		$V_{DD} = 15V$		200		80	240		320	Ω
ΔR_{ON}	Δ"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2}$								
	Between any 2 of	$V_{\rm C} = V_{\rm DD}, V_{\rm IS} = V_{\rm SS}^2$ to $V_{\rm DD}$								
	4 Switches	V _{DD} =10V				10				Ω
		$V_{DD} = 15V$				5				Ω
IIS	Input or Output Leakage	V _C =0		±50		±0.1	±50		±500	nA
	Switch "OFF"	$V_{IS} = 15V$ and 0V,								
		V _{OS} =0V and 15V								
CONTROL	LINPUTS				-					
V _{ILC}	Low Level Input Voltage	$V_{IS} = V_{SS}$ and V_{DD}								
		$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS} = \pm 10 \ \mu A$								
		V _{DD} =5V		1.5		2.25	1.5		1.5	V
		V _{DD} =10V		3.0		4.5	3.0		3.0	V
		V _{DD} =15V		4.0		6.75	4.0		4.0	V
VIHC	High Level Input Voltage	V _{DD} =5V	3.5		3.5	2.75		3.5		v
		V _{DD} =10V (see note 6)	7.0		7.0	5.5		7.0		V
		V _{DD} =15V	11.0		11.0	8.25		11.0		V
I _{IN}	Input Current	V _{DD} -V _{SS} =15V		±0.1		±10 ⁻⁵	±0.1		±1.0	μA
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_{C} \ge V_{SS}$								

DC Electrical Characteristics CD4066BC (Note 2)

Symbol	Parameter	Conditions	-40°C		+ 25°C			+ 8	Units	
Cymbol	l'alameter		Min	Max	Min	Тур	Max	Min	Max	onnto
I _{DD}	Quiescent Device Current	V _{DD} =5V		1.0		0.01	1.0		7.5	μA
		V _{DD} =10V		2.0		0.01	2.0		15	μΑ
		$V_{DD} = 15V$		4.0		0.01	4.0		30	μΑ
	Symbol		I _{DD} Quiescent Device Current V _{DD} =5V V _{DD} =10V	Symbol Parameter Conditions I _{DD} Quiescent Device Current V _{DD} =5V V _{DD} =10V	Symbol Parameter Conditions Min Max I _{DD} Quiescent Device Current V _{DD} =5V V _{DD} =10V 1.0 2.0	Symbol Parameter Conditions IDD Quiescent Device Current VDD=5V 1.0 VDD=10V 2.0 1.0	Symbol Parameter Conditions Min Max Min Typ I _{DD} Quiescent Device Current V _{DD} =5V 1.0 0.01 V _{DD} =10V 2.0 0.01	Symbol Parameter Conditions Min Max Min Typ Max I _{DD} Quiescent Device Current V _{DD} =5V 1.0 0.01 1.0 V _{DD} =10V 2.0 0.01 2.0	Symbol Parameter Conditions Min Max Min Typ Max Min IDD Quiescent Device Current VDD=5V 1.0 0.01 1.0 2.0 0.01 2.0	Symbol Parameter Conditions Min Max Min Typ Max Min Max I _{DD} Quiescent Device Current V _{DD} =5V 1.0 0.01 1.0 7.5 V _{DD} =10V 2.0 0.01 2.0 15

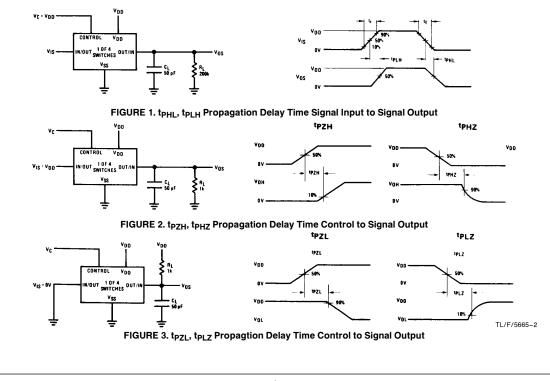
Symbol Parameter		Conditions		-40°C +			+ 2	25°C		+ 85°C		Unite
Symbol	Parameter		onations	Min	Мах	Min	Ту	/p	Max	Min	Max	Units
SIGNAL II	NPUTS AND OUTPUTS											
R _{ON}	"ON" Resistance	$R_L = 10 k\Omega$	to $\frac{V_{DD} - V_{SS}}{2}$									
		$V_{C} = V_{DD}, V_{DD}$										
		$V_{DD} = 5V$ $V_{DD} = 10V$			850 330		27		1050 400		1200 520	Ω Ω
		$V_{DD} = 15V$			210		8		400 240		300	Ω
ΔR _{ON}	∆"ON" Resistance	$R_{I} = 10 k\Omega$	to $\frac{V_{DD} - V_{SS}}{2}$									
	Between Any 2 of		$V_{CC} = V_{DD}, V_{IS} = V_{SS}$ to V_{DD} $V_{DD} = 10V$									
	4 Switches						1					Ω
1	$V_{DD} =$				+ 50		5 ±0		+ 50		+ 200	Ω D nA
IIS	Input or Output Leakage Switch "OFF"	ge V _C =0			±50		ΞŪ	J. I	±50		±200	
CONTROL	INPUTS											
VILC	Low Level Input Voltage VIS = VSS											
		$V_{OS} = V_{DD}$ and V_{SS} $I_{IS} = \pm 10 \mu A$ $V_{DD} = 5V$										
					1.5		2.	25	1.5		1.5	v
		$V_{DD} = 10V$			3.0		4.		3.0		3.0	V
		V _{DD} =15V		0.5	4.0	0.5	6.		4.0	0.5	4.0	
VIHC	High Level Input Voltage	V _{DD} =5V V _{DD} =10V (See note 6)		3.5 7.0		3.5 7.0	2. 5			3.5 7.0		v v
		V _{DD} =15V		11.0		11.0	8.	25		11.0		v
I _{IN}	Input Current	$V_{DD} - V_{SS} = 15V$		±	±0.3		±10 ⁻⁵ ±		± 0.3		±1.0	μA
		$ V_{DD} \ge V_{IS} \ge$ $ V_{DD} \ge V_{C} \ge$										
	-										•	
AC E												
	Electrical Charac	teristics	S* T _A =25°C, t _r =t	t _f =20 r	ns and V	SS=0\	/ unle	ss otl	nerwise	noted		
Symbo				t _f =20 r onditio		SS=0\	/ unle	ss otl Mi		noted	Max	Units
Symbo t _{PHL} , t _{PL}	Parameter	•		onditio	ons		/ unle				Max	Units
-	Parameter	ime Signal	$C = V_{C} = V_{DD}, C_{L} = 5$ $R_{L} = 200k$	onditio	ons		/ unle		n T <u>i</u>	ур		
-	Parameter H Propagation Delay T	ime Signal	$C = V_{C} = V_{DD}, C_{L} = 5$ $R_{L} = 200k$ $V_{DD} = 5V$	onditio	ons		/ unle		n Ty 2		Max 55 35	Units ns ns
-	Parameter H Propagation Delay T	ime Signal	$C = V_{C} = V_{DD}, C_{L} = 5$ $R_{L} = 200k$	onditio	ons		/ unle		n Ty 2 1	yp	55	ns
-	H Propagation Delay T Input to Signal Output	ime Signal It	$\label{eq:V_C} \begin{array}{c} C \\ V_{C} = V_{DD}, \ C_{L} = 5 \\ R_{L} = 200 k \\ V_{DD} = 5 V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = 0 \end{array}$	onditic	ons Figure 1)			n Ty 2 1	yp 25 5	55 35 25	ns ns ns
t _{PHL} , t _{PL}	H Propagation Delay T Input to Signal Output Propagation Delay T Propagation Delay T Control Input to Sign	ime Signal It ime al	$\label{eq:V_C} \begin{array}{c} C \\ V_{C} = V_{DD}, \ C_{L} = 5 \\ R_{L} = 200 k \\ V_{DD} = 5 V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \end{array}$	onditic	ons Figure 1)			n Ty 2 1	yp 25 5	55 35 25 125	ns ns ns ns
t _{PHL} , t _{PL}	H Propagation Delay T Input to Signal Output	ime Signal It ime al	$\label{eq:V_C} \begin{array}{c} C \\ V_{C} = V_{DD}, \ C_{L} = 5 \\ R_{L} = 200 k \\ V_{DD} = 5 V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = 0 \end{array}$	onditic	ons Figure 1)			n Ty 2 1	yp 25 5	55 35 25	ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level Z_Z Propagation Delay Trends	ime Signal tt ime al nce to ime	$\label{eq:V_C} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = 0 \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = 0 \\ R_{L} = 1.0 \ k\Omega, C_{L} = 0 \\ R_{L} = $	onditic 50 pF, (/ = 50 pF	ns Figure 1', , (Figure) <i>s 2</i> and	13)		n Ty 2 1	yp 25 5	55 35 25 125 60	ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends	ime Signal it ime al ince to ime al	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ \end{array}$	onditic 50 pF, (/ = 50 pF	ns Figure 1', , (Figure) <i>s 2</i> and	13)		n Ty 2 1	yp 25 5	55 35 25 125 60 50 125	ns ns ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends Output Logical Level Control Input to Sign	ime Signal it ime al ince to ime al	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 5V \\ V_{DD} = 10V \\ \end{array}$	onditic 50 pF, (/ = 50 pF	ns Figure 1', , (Figure) <i>s 2</i> and	13)		n Ty 2 1	yp 25 5	55 35 25 125 60 50 125 60	ns ns ns ns ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends Output High Impedar Logical Level Z Propagation Delay Trends	ime Signal it ime al ince to ime al to	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 15V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ V_{DD} = 15V \\ V_{C} = V_{DD} = 5V, \ V_{C} = \\ \end{array}$	onditic i0 pF, (/ = 50 pF = 50 pF	, (Figure 1) , (Figure , (Figure) <i>Is 2</i> and <i>Is 2</i> and	13)		n Ty 2 1 1	yp 25 5	55 35 25 125 60 50 125	ns ns ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level ZZ Propagation Delay Trends Output High Impedar Control Input to Sign Output Logical Level High Impedance	ime Signal it ime al ince to ime al to	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 5V \\ V_{DD} = 15V \\ V_{DD} = 15V \\ V_{C} = V_{DD} = 5V, V \\ R_{L} = 10 \ k\Omega, V_{IS} = \\ \end{array}$	onditic i0 pF, (/ = 50 pF = 50 pF	, (Figure 1) , (Figure , (Figure) <i>Is 2</i> and <i>Is 2</i> and	13)		n Ty 2 1 1	yp 55 50	55 35 25 125 60 50 125 60	ns ns ns ns ns ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Propagation Delay Trends ZL Propagation Delay Trends Output High Impedar Logical Level ZZ Propagation Delay Trends Output High Impedar Control Input to Sign Output Logical Level High Impedance	ime Signal it ime al nce to ime al to	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, \ C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 15V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ V_{DD} = 15V \\ V_{C} = V_{DD} = 5V, \ V_{C} = \\ \end{array}$	onditic 50 pF, (/ = 50 pF = 50 pF / _{SS} = = 5V _{p-p}	nns Figure 1', , (Figure , (Figure , (Figure 5V , f = 1 k⊦) <i>Is 2</i> and <i>Is 2</i> and	13)		n Ty 2 1 1	yp 55 50	55 35 25 125 60 50 125 60	ns ns ns ns ns ns ns ns ns
t _{PHL} , t _{PL}	I Parameter H Propagation Delay Trends Input to Signal Output Input to Signal Output ZL Propagation Delay Trends Output High Impedar Logical Level ZZ Propagation Delay Trends Output High Impedar Logical Level ZZ Propagation Delay Trends Output Logical Level Sine Wave Distortion	ime Signal it ime al ince to ime al to e-Switch	$\label{eq:constraint} \begin{array}{c} C \\ V_{C} = V_{DD}, C_{L} = 5 \\ R_{L} = 200k \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ R_{L} = 1.0 \ k\Omega, C_{L} = \\ V_{DD} = 5V \\ V_{DD} = 15V \\ V_{DD} = 15V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ V_{C} = V_{DD} = 5V, V \\ R_{L} = 10 \ k\Omega, V_{IS} = \\ (Figure \ 4) \end{array}$	onditic 50 pF, (/ = 50 pF = 50 pF / _{SS} = - = 5V _p -p / _{SS} = - 5V _p -p,	, (Figure 1) , (Figure , (Figure 5V , f = 1 kH 5V,) <i>s 2</i> and <i>s 2</i> and	13)		n Ty 2 1 1	ур 15 5 0	55 35 25 125 60 50 125 60	ns ns ns ns ns ns %

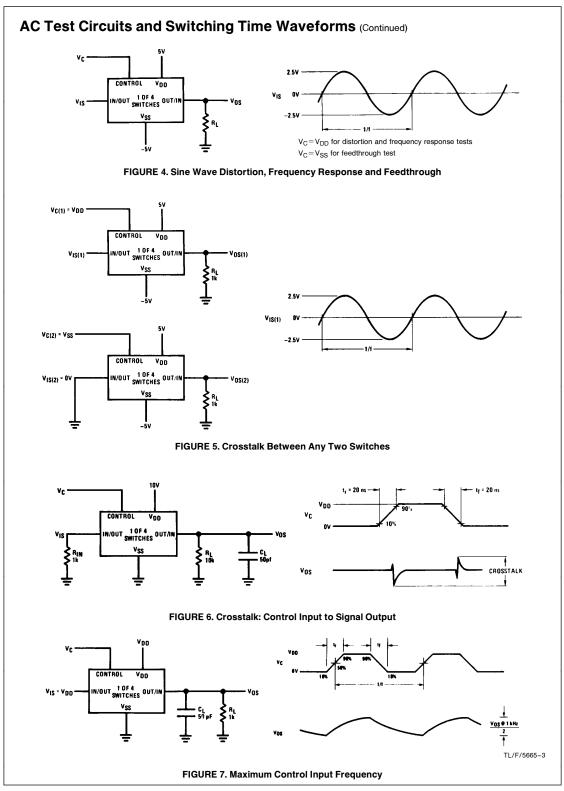
AC El	AC Electrical Characteristics [*] (Continued) $T_A = 25^{\circ}C$, $t_r = t_f = 20$ ns and $V_{SS} = 0V$ unless otherwise noted								
Symbol	Parameter	Min	Тур	Мах	Units				
	Feedthrough — Switch "OFF" (Frequency at -50 dB)	$V_{DD} = 5.0V, V_{CC} = V_{SS} = -5.0V,$ $R_L = 1 k\Omega, V_{IS} = 5.0V_{p-p}, 20 Log_{10},$ $V_{OS}/V_{IS} = -50 dB, (Figure 4)$		1.25					
	Crosstalk Between Any Two Switches (Frequency at -50 dB)	$V_{DD} = V_{C(A)} = 5.0V; V_{SS} = V_{C(B)} = 5.0V, R_{L}1 k\Omega, V_{IS(A)} = 5.0 V_{p-p}, 20 Log_{10}, V_{OS(B)}/V_{IS(A)} = -50 dB (Figure 5)$		0.9		MHz			
	Crosstalk; Control Input to Signal Output	$V_{DD} = 10V$, $R_L = 10 \text{ k}\Omega$, $R_{IN} = 1.0 \text{ k}\Omega$, $V_{CC} = 10V$ Square Wave, $C_L = 50 \text{ pF}$ (Figure 6)		150		mV _{p-p}			
	Maximum Control Input	$R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, (Figure 7)$ $V_{OS(f)} = \frac{1}{2} V_{OS}(1.0 \text{ kHz})$							
		$V_{DD} = 5.0V$ $V_{DD} = 10V$ $V_{DD} = 15V$		6.0 8.0 8.5		MHz MHz MHz			
CIS	Signal Input Capacitance			8.0		pF			
C _{OS}	Signal Output Capacitance	V _{DD} =10V		8.0		pF			
C _{IOS}	Feedthrough Capacitance	V _C =0V		0.5		pF			
C _{IN}	Control Input Capacitance			5.0	7.5	pF			

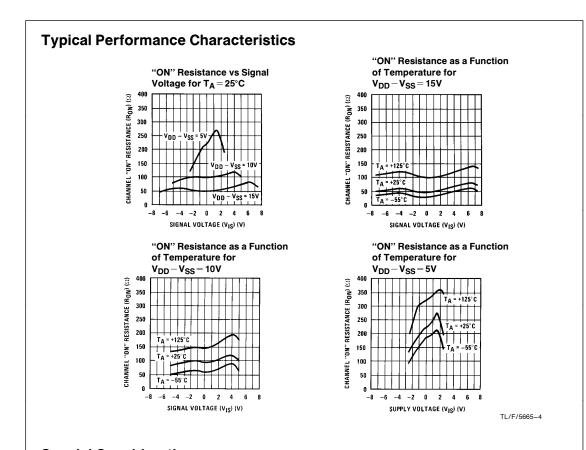
*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS}=0V unless otherwise specified.

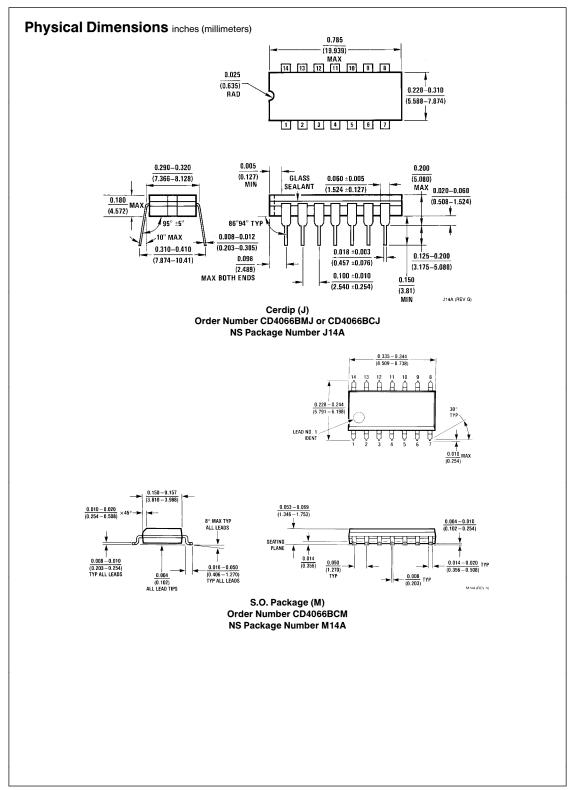

Note 3: These devices should not be connected to circuits with the power "ON".

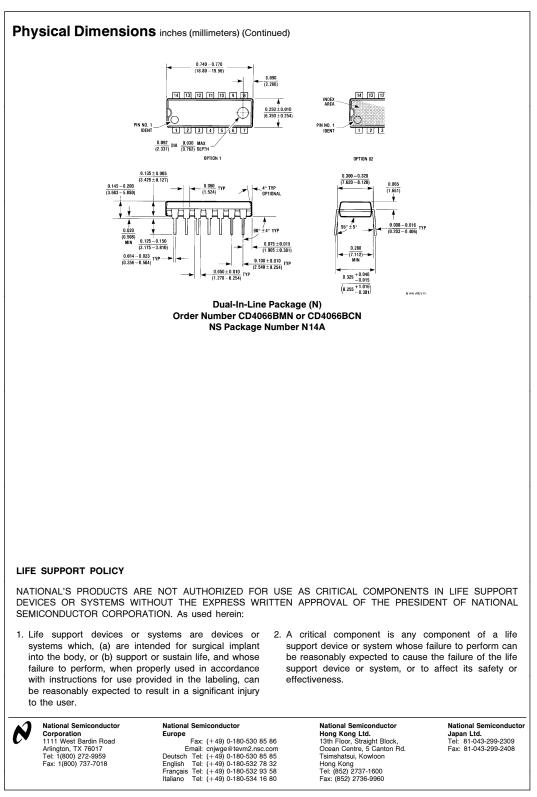

Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_L wherever it is specified. Note 5: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.


Note 5. Vis the voltage at the involt pin and vis is the voltage at the out in pin. Vis the voltage at the control nipt

Note 6: Conditions for V_{IHC}: a) V_{IS}=V_{DD}, I_{OS}=standard B series I_{OH} b) V_{IS}=0V, I_{OL}=standard B series I_{OL}.

AC Test Circuits and Switching Time Waveforms


Special Considerations


In applications where separate power sources are used to drive V_{DD} and the signal input, the V_{DD} current capability should exceed $V_{DD}/R_{\rm L}$ ($R_{\rm L}$ = effective external load of the 4 CD4066BM/CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BM/CD4066BC.

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid

drawing V_{DD} current when switch current flows into terminals 1, 4, 8 or 11, the voltage drop across the bidirectional switch must not exceed 0.6V at $T_A{\leq}25^\circ\text{C}$, or 0.4V at $T_A{>}25^\circ\text{C}$ (calculated from R_{ON} values shown).

No V_{DD} current will flow through ${\rm R}_{\rm L}$ if the switch current flows into terminals 2, 3, 9 or 10.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.