SKM 100GB176D

SEMITRANSTM 2

Trench IGBT Modules

SKM 100GB176D

Target Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives mains 575 -750 V AC
- · Public transport (auxiliary syst.

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1700	V						
I _C	T _c = 25 (80) °C	125 (90)	Α						
I _{CRM}	$t_p = 1 \text{ ms}$	150	Α						
V_{GES}		± 20	V						
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	100 (70)	Α						
I _{FRM}	$t_p = 1 \text{ ms}$	150	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	720	Α						

011		T - 25°C	' unloss of	horwico cr	ocified	
Characteristics		0000	ase = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3 \text{ mA}$	5,2	5,8	6,4	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ () °C		0,1	0,3	mA	
V _{CE(TO)}	$T_{j} = 25 \text{ () } ^{\circ}\text{C}$		1 (0,9)	1,2 (1,1)	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		13 (20)		mΩ	
V _{CE(sat)}	I_{Cnom} = 75 A, V_{GE} = 15 V, chip level		2 (2,4)	2,45 (2,9)	V	
C _{ies}	under following conditions		5,7		nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		0,28		nF	
C _{res}			0,22		nF	
L _{CE}				30	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)		mΩ	
t _{d(on)}	V _{CC} = 1200 V, I _{Cnom} = 75 A		280		ns	
t _r	$R_{Gon} = R_{Goff} = 4.3 \Omega, T_j = 125 °C$		40		ns	
t _{d(off)}	V _{GE} ± 15 V		680		ns	
t _f			140		ns	
$E_{on} (E_{off})$			43 (30)		mJ	
Inverse diode						
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V; T_{j} = 25 (125)	°C	1,6 (1,6)	1,9 (1,9)	V	
V _(TO)	T _j = 25 (125) °C		1,1 (0,9)	,	V	
r _T	$T_{j} = 25 (125) ^{\circ}C$		6,7 (9,3)	8 (11)	mΩ	
I _{RRM}	$I_{Fnom} = 75 \text{ A}; T_j = 125 \text{ () }^{\circ}\text{C}$		80		Α	
Q_{rr}	di/dt = A/μs				μC	
E _{rr}	V _{GE} = 0 V				mJ	
Thermal characteristics						
R _{th(j-c)}	per IGBT			0,24	K/W	
R _{th(j-c)D}	per Inverse Diode			0,45	K/W	
R _{th(c-s)}	per module			0,05	K/W	
Mechanical data						
M_s	to heatsink M6	3		5	Nm	
Mt	to terminals M5	2,5		5	Nm	
w				160	g	

SKM 100GB176D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.