MJE15028, MJE15030 (NPN) MJE15029, MJE15031 (PNP)

Preferred Device
Complementary Silicon Plastic Power Transistors

These devices are designed for use as high-frequency drivers in audio amplifiers.

Features

- DC Current Gain Specified to 4.0 Amperes

$$
\begin{aligned}
\mathrm{h}_{\mathrm{FE}} & =40(\mathrm{Min}) @ \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc} \\
& =20(\mathrm{Min}) @ \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}
\end{aligned}
$$

- Collector-Emitter Sustaining Voltage -

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEO}(\mathrm{sus})} & =120 \mathrm{Vdc}(\mathrm{Min}) ; \text { MJE15028, MJE15029 } \\
& =150 \mathrm{Vdc}(\mathrm{Min}) ; \text { MJE15030, MJE15031 }
\end{aligned}
$$

- High Current Gain - Bandwidth Product

$$
\mathrm{f}_{\mathrm{T}}=30 \mathrm{MHz}(\mathrm{Min}) @ \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}
$$

- TO-220AB Compact Package
- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MJE15028, MJE15029 MJE15030, MJE15031	$\mathrm{V}_{\text {CEO }}$	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	Vdc
Collector-Base Voltage MJE15028, MJE15029 MJE15030, MJE15031	V_{CB}	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current $\begin{aligned} & \text { - Continuous } \\ & \text { - Peak }\end{aligned}$	$\begin{aligned} & \\ & \mathrm{IC}_{\mathrm{C}} \end{aligned}$	$\begin{aligned} & 8.0 \\ & 16 \end{aligned}$	Adc
Base Current	I_{B}	2.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 50 \\ 0.40 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 2.0 \\ 0.016 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
8 AMPERE
POWER TRANSISTORS COMPLEMENTARY SILICON 120-150 VOLTS, 50 WATTS

TO-220AB CASE 221A-09 STYLE 1

MARKING DIAGRAM

MJE150xx = Device Code

$$
x=28,29,30 \text {, or } 31
$$

$$
\mathrm{G} \quad=\text { Pb-Free Package }
$$

$$
\text { A } \quad=\text { Assembly Location }
$$

$$
Y \quad=\text { Year }
$$

WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

MJE15028, MJE15030 (NPN) MJE15029, MJE15031 (PNP)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
$\begin{aligned} & \text { Collector-Emitter Sustaining Voltage (Note 1) } \\ & \quad\left(I_{C}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	MJE15028, MJE15029 MJE15030, MJE15031	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	-	Vdc
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=120 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=150 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	MJE15028, MJE15029 MJE15030, MJE15031	ICEO	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	mAdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{C B}=120 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=150 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{aligned}$	MJE15028, MJE15029 MJE15030, MJE15031	$\mathrm{I}_{\text {CBO }}$	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		$l_{\text {ebo }}$	-	10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Note 1)

DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	-
DC Current Gain Linearity ($\mathrm{V}_{\text {CE }}$ From 2.0 V to 20 V , IC_{C} From 0.1 A to 3 A) (NPN to PNP)	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} \text { Typ } \\ 2 \\ 3 \end{gathered}$		
Collector-Emitter Saturation Voltage $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right.$)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.5	Vdc
Base-Emitter On Voltage $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE}}($ on)	-	1.0	Vdc

DYNAMIC CHARACTERISTICS

Current Gain - Bandwidth Product (Note 2) $\left(\mathrm{I}_{\mathrm{C}}=500\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=10 \mathrm{MHz}\right)$	f_{T}	30	-	MHz

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.
2. $\mathrm{f}_{\mathrm{T}}=\left|\mathrm{h}_{\mathrm{fe}}\right| \bullet \mathrm{f}_{\text {test }}$.

Figure 1. Power Derating

MJE15028, MJE15030 (NPN) MJE15029, MJE15031 (PNP)

Figure 2. Thermal Response

Figure 3. Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation then the curves indicate.

The data of Figures 3 and 4 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ $<150^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 2. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 4. Reverse-Bias Switching Safe Operating Area

Figure 5. Capacitances

MJE15028, MJE15030 (NPN) MJE15029, MJE15031 (PNP)

Figure 6. Small-Signal Current Gain

Figure 7. Current Gain-Bandwidth Product

PNP — MJE15029 MJE15031

Figure 8. DC Current Gain

Figure 9. "On" Voltage

MJE15028, MJE15030 (NPN) MJE15029, MJE15031 (PNP)

Figure 10. Turn-On Times

Figure 11. Turn-Off Times

ORDERING INFORMATION

Device	Package	Shipping
MJE15028	TO-220	50 Units / Rail
MJE15028G	TO-220 (Pb-Free)	50 Units / Rail
MJE15029	TO-220	50 Units / Rail
MJE15029G	TO-220 (Pb-Free)	50 Units / Rail
MJE15030	TO-220	50 Units / Rail
MJE15030G	TO-220 (Pb-Free)	50 Units / Rail
MJE15031	TO-220	50 Units / Rail
MJE15031G	TO-220 (Pb-Free)	50 Units / Rail

PACKAGE DIMENSIONS

TO-220AB
CASE 221A-09
ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
\mathbf{Z}	---	0.080	---	2.04

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

