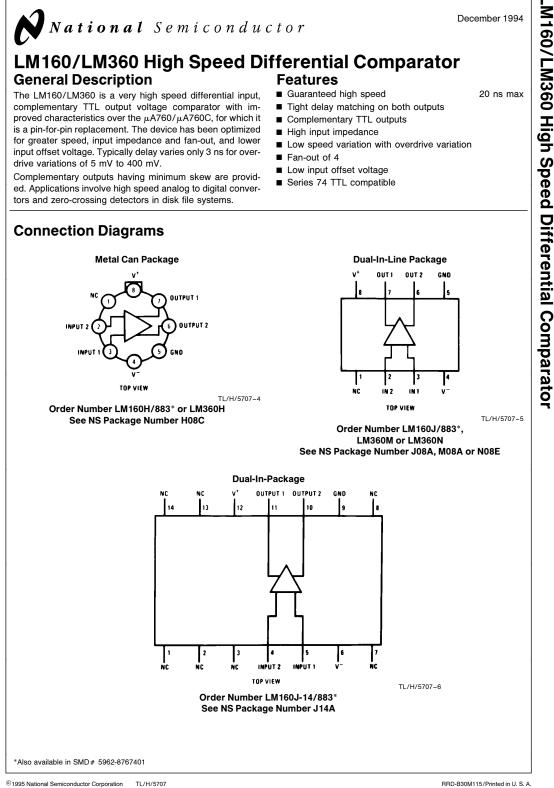
National Semiconductor


LM160/LM360 High Speed Differential Comparator **General Description Features**

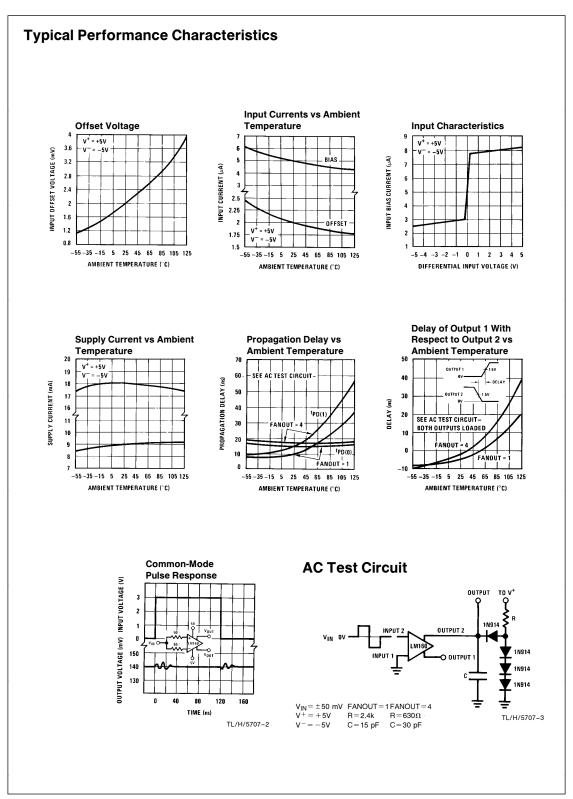
The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the μ A760/ μ A760C, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV.

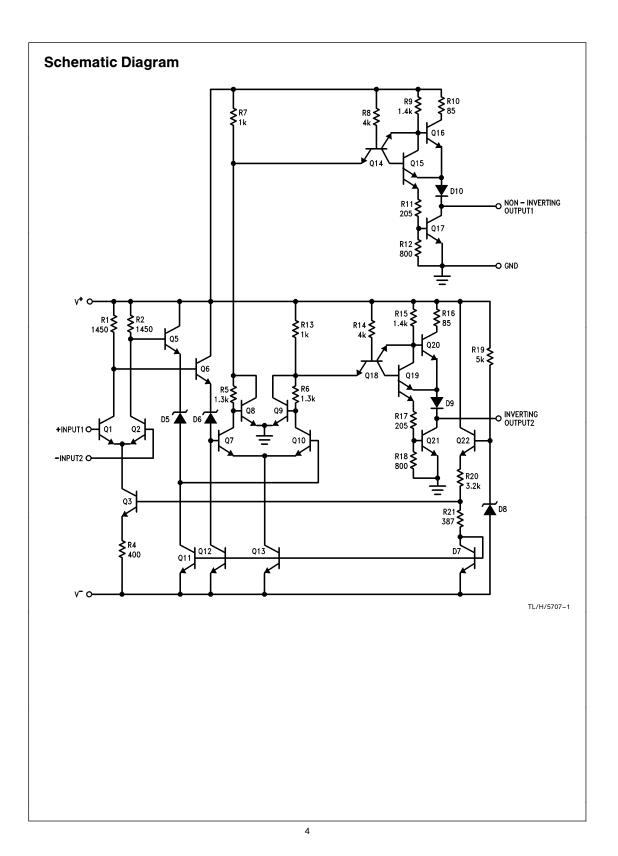
Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

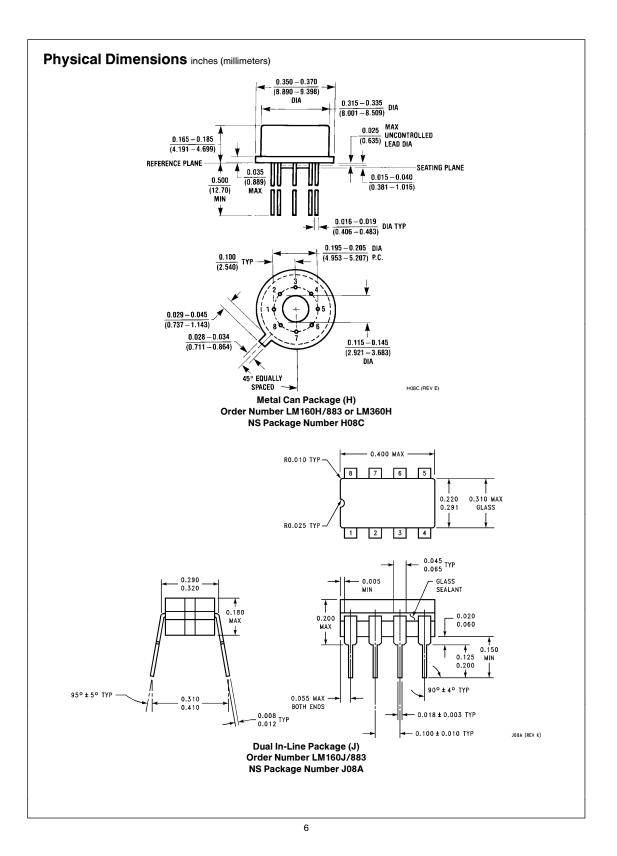
Connection Diagrams

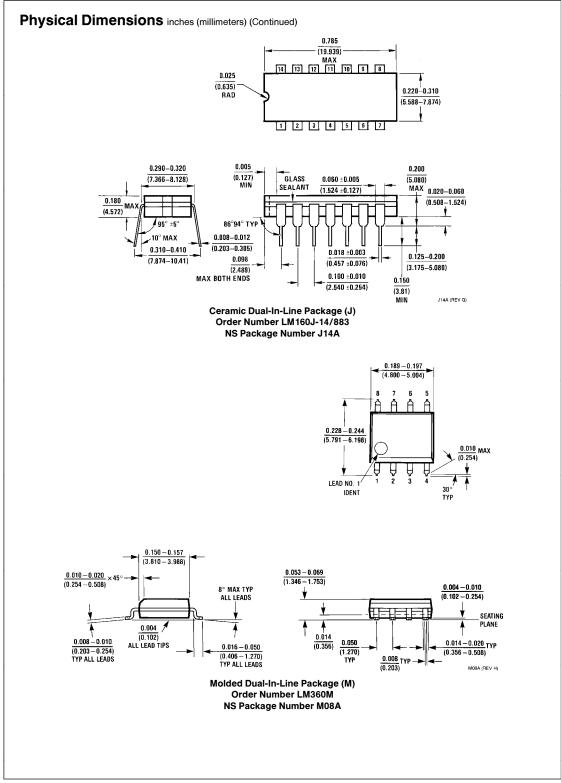
- Guaranteed high speed
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

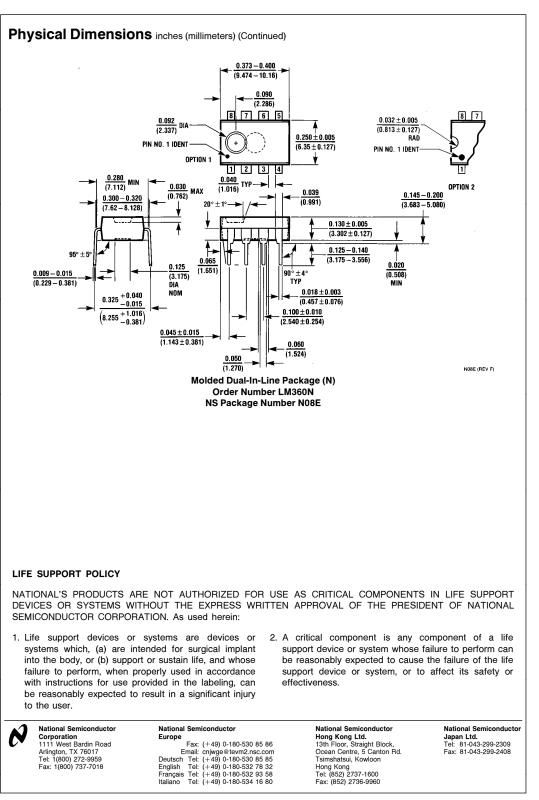
December 1994


20 ns max


If Military/Aerospace specified please contact the National Office/Distributors for availabil	Semiconductor Sales	Operating Temperature Range LM160 LM360	−55°C to +125°C 0°C to +70°C	
(Note 7)		Storage Temperature Range	-65°C to +150°C	
Positive Supply Voltage	+8V	Lead Temperature (Soldering, 10 sec.)	260°C	
Negative Supply Voltage	-8V	Soldering Information		
Peak Output Current	20 mA	Dual-In-Line Package		
Differential Input Voltage	±5V	Soldering (10 seconds)	260°C	
Input Voltage	$V^+ \geq V_{IN} \geq V^-$	Small Outline Package Vapor Phase (60 seconds)	215°C	
ESD Tolerance (Note 8)	1600V	Infrared (15 seconds)	220°C	
		See AN-450 "Surface Mounting Metho on Product Reliability" for other metho face mount devices.		


Electrical Characteristics (T_{MIN} \leq T_A \leq T_{MAX})


Parameter	Conditions	Min	Тур	Мах	Units
Operating Conditions			.,,,,	max	01110
Supply Voltage V_{CC}^+		4.5	5	6.5	v
Supply Voltage V _{CC} ⁻		-4.5	-5	-6.5	V
Input Offset Voltage	$R_{S} \leq 200\Omega$		2	5	mV
Input Offset Current			0.5	3	μA
Input Bias Current			5	20	μA
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 1, 6)		13	25	ns
	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 2, 6)		12	20	ns
	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 3, 6)	_	14		ns
Response Time Difference between Outputs					
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } - V_{IN2})$	$T_A = 25^{\circ}C$ (Notes 1, 6)		2		ns
$(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN1})$	$T_A = 25^{\circ}C$ (Notes 1, 6)		2		ns
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } + V_{IN2})$ $(t_{pd} \text{ of } - V_{IN1}) - (t_{pd} \text{ of } - V_{IN2})$	$T_A = 25^{\circ}C$ (Notes 1, 6) $T_A = 25^{\circ}C$ (Notes 1, 6)		2		ns ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
			3		рг
Average Temperature Coefficient of Input Offset Voltage	$R_{S} = 50\Omega$		8		μV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	$V_{S} = \pm 6.5 V$	±4	±4.5		V
Differential Input Voltage Range		±5			V
Output High Voltage (Either Output)	$I_{OUT} = -320 \ \mu A, V_S = \pm 4.5 V$	2.4	3		v
Output Low Voltage (Either Output)	$I_{SINK} = 6.4 \text{ mA}$		0.25	0.4	V
Positive Supply Current	$V_{S} = \pm 6.5 V$		18	32	mA
Negative Supply Current	$V_{S} = \pm 6.5 V$		-9	-16	mA
Note 1: Response time measured from the 50% point of Note 2: Response time measured from the 50% point of Note 3: Response time measured from the start of a 100 Note 4: Typical thermal impedances are as follows:	a 2 Vp-p 10 MHz sinusoidal input to the 50% point	nt of the outpu	t.	ogic threshold	
Cavity DIP (J): θ_{jA} 135°C/W Molded DIP (N): θ_{iA} 130°C/W	Header (H) 6	14	5°C/W 7°C/W	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
worded Dir (N). σ_{jA} 130 C/W	6		5°C/W	,	······,
Note 5: The device may be damaged if used beyond the					
Note 6: Measurements are made in AC Test Circuit, Fand	put = 1				
Note 7: Refer to RETS 160X for LM160H, LM160J-14 and					
Note 9: Human body model 1.5 kQ in corios with 100 pE					


Note 8: Human body model, 1.5 k Ω in series with 100 pF.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.