
BB721

Tuner Diodes

SOD-123

Dimensions in inches and (millimeters)

FEATURES

- Silicon epitaxial planar capacitance diodes with very wide effective capacitance variation for tuning the whole range of UHF television bands.
- ♦ Two BB721/BB721S tuner diodes in series are used for direct satellite receivers.

- These diodes are available as singles or as matched sets of two or more units according to the tracking condition described in the table of characteristics.
- This diode is also available in SOD-323 case with the type designation BB721S.

MECHANICAL DATA

Case: SOD-123 Plastic Case Weight: approx. 0.01 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit
Reverse Voltage	V _R	32	V
Ambient Temperature	T _{amb}	125	°C
Storage Temperature Range	Τ _S	-55 to +125	°C

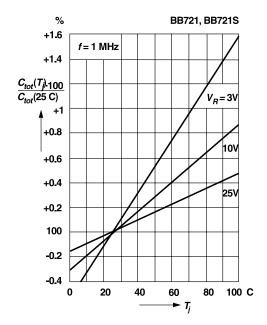
BB721

ELECTRICAL CHARACTERISTICS

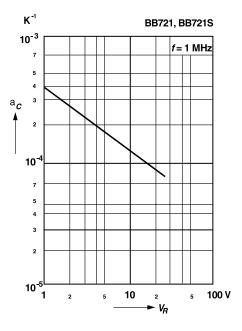
Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Min.	Тур.	Max.	Unit
Reverse Breakdown Voltage at I _R = 100 μ A	V _{(BR)R}	32	-	-	V
Leakage Current at V _R = 30 V	۱ _R	-	-	10	nA
Capacitance f = 1 MHz at $V_R = 28 V$ at $V_R = 1 V$	C _{tot} C _{tot}	1.9 17.5		2.3 20	pF pF
Effective Capacitance Ratio, $f = 1 \text{ MHz}$ at V _R = 1 to 28 V	C _{tot} (1 V) C _{tot} (28V)	8.2	-	9.8	-
Series Resistance at f = 470 MHz, C _{tot} = 14 pF	r _s	-	0.55	-	Ω
Series Inductance	Ls	-	2.5	-	nH

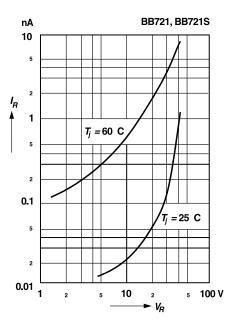
For any two of six consecutive diodes in the carrier tape, the maximum capacitance deviation in the reverse bias voltage of $V_R = 0.5$ to 28 V is max. 2.5%.


RATINGS AND CHARACTERISTIC CURVES BB721

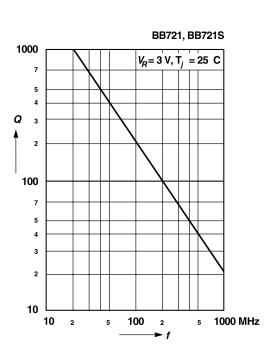
P_{20}^{F} $T_{j} = 25 \text{ C}, f = 1 \text{ MHz}$ $T_{j} = 25 \text{ C}, f = 1 \text{ MZ}$


Capacitance

versus reverse voltage


Relative capacitance versus junction temperature

Temperature coefficient of capacitance versus reverse voltage



Leakage current versus reverse voltage

RATINGS AND CHARACTERISTIC CURVES BB721

Q-Factor versus frequency

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.