DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4053 Triple 2-channel analog multiplexer/demultiplexer

File under Integrated Circuits, IC06

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

FEATURES

- Low "ON" resistance: 80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$ 70Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$ 60Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4053 are high-speed Si-gate CMOS devices and are pin compatible with the " 4053 " of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 4053$ are triple 2-channel analog multiplexers/demultiplexers with a common enable input ($\overline{\mathrm{E}}$). Each multiplexer/demultiplexer has two independent inputs/outputs ($\mathrm{n} \mathrm{Y}_{0}$ and $\mathrm{n} \mathrm{Y}_{1}$), a common input/output (nZ) and three digital select inputs (S_{1} to S_{3}).

With \bar{E} LOW, one of the two switches is selected (low impedance ON -state) by S_{1} to S_{3}. With $\overline{\mathrm{E}}$ HIGH, all switches are in the high impedance OFF-state, independent of S_{1} to S_{3}.
V_{CC} and GND are the supply voltage pins for the digital control inputs (S_{1}, to S_{3}, and $\overline{\mathrm{E}}$). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs ($n Y_{0}$ and $n Y_{1}$, and $n Z$) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time \bar{E} to $V_{O S}$ S_{n} to $V_{O S}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 17 \\ & 21 \end{aligned}$	$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time \bar{E} to V_{OS} S_{n} to V_{OS}		$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	36	36	pF
C_{S}	max. switch capacitance independent (Y) common		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{array}{\|l} 5 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$:
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in $\mathrm{pF} ; \mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2,1	$2 \mathrm{Y}_{0}$ to, $2 \mathrm{Y}_{1}$	independent inputs/outputs
5,3	$3 \mathrm{Y}_{0}$ to, $3 \mathrm{Y}_{1}$	independent inputs/outputs
6	$\overline{\mathrm{E}}$	enable input (active LOW)
7	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
8	GND	ground (0 V)
$11,10,9$	$\mathrm{~S}_{1}$ to S_{3}	select inputs
12,13	$1 \mathrm{Y}_{0}, 1 \mathrm{Y}_{1}$	independent inputs/outputs
$14,15,4$	1 Z to $3 Z$	common inputs/outputs
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

FUNCTION TABLE

INPUTS		CHANNEL ON
$\overline{\mathrm{E}}$	$\mathbf{S}_{\mathbf{n}}$	
L	L	$\mathrm{nY} \mathrm{O}_{0}-\mathrm{nZ}$
L	H	$\mathrm{nY} 1-\mathrm{nZ}$
H	X	none

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\mathrm{V}_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm \mathrm{I}_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {EE }}$	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\pm \mathrm{l}_{\mathrm{CC}} ; \pm_{\mathrm{GND}}$	DC V ${ }_{\text {Cc }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ $74 \mathrm{HC} / \mathrm{HCT}$ above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
$\mathrm{P}_{\text {S }}$	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing $V_{C C}$ current out of terminals $n Z$, when switch current flows in terminals $n Y_{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals nZ , no V_{Cc} current will flow out of terminals $n Y_{n}$. In this case there is no limit for the voltage drop across the switch, but the voltages at $n Y_{n}$ and $n Z$ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
V_{CC}	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V_{CC}	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_{1}	DC input voltage range	GND		V_{CC}	GND		V_{CC}	V	
V_{S}	DC switch voltage range	V_{E}		V_{CC}	V_{E}		V_{CC}	V	
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	see DC and AC
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
t_{r}, t_{f}	input rise and fall times		6.0	$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4053 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HCT 4053 .

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For 74HCT: $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS				
		74HC/HCT								$V_{\text {Cc }}$ (V)	$\begin{aligned} & V_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathrm{A}) \end{gathered}$	$\mathrm{V}_{\text {is }}$	V_{1}
		+ 25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
RON	ON resistance (peak)		$\begin{aligned} & - \\ & 100 \\ & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline- \\ & 180 \\ & 160 \\ & 130 \end{aligned}$		$\begin{aligned} & \hline- \\ & 225 \\ & 200 \\ & 165 \end{aligned}$		$\begin{aligned} & \hline- \\ & 270 \\ & 240 \\ & 195 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	V_{CC} to V_{EE}	V_{IH} or V_{IL}
RON	ON resistance (rail)		$\begin{aligned} & \hline 150 \\ & 80 \\ & 70 \\ & 60 \end{aligned}$	$\begin{array}{\|l} - \\ 140 \\ 120 \\ 105 \end{array}$		$\begin{aligned} & - \\ & 175 \\ & 150 \\ & 130 \end{aligned}$		$\begin{aligned} & 210 \\ & 180 \\ & 160 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	V_{EE}	V_{IH} or $V_{I L}$
RON	ON resistance (rail)		$\begin{array}{\|l\|} \hline 150 \\ 90 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & 240 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	V_{CC}	V_{IH} or $\mathrm{V}_{\text {IL }}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\triangle \mathrm{ON}$ resistance between any two channels		$\begin{array}{\|l} - \\ 9 \\ 8 \\ 6 \end{array}$						Ω Ω Ω Ω	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$		V_{CC} to V_{EE}	V_{IH} or $V_{I L}$

Notes to the characteristics

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog

 multiplexer/demultiplexer
74HC/HCT4053

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	Tamb $\left(^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS			
		74HC								$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{cc}}}$	$\begin{gathered} \mathbf{v}_{\mathrm{EE}} \\ \mathbf{V} \end{gathered}$	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$	$\begin{aligned} & 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\begin{aligned} & \hline 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \end{aligned}$	$\begin{array}{\|l} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{aligned} & \hline 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$	V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
± 1	input leakage current			$\begin{array}{l\|} \hline 0.1 \\ 0.2 \end{array}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{array}{l\|} 1.0 \\ 2.0 \end{array}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{HH} or V_{IL}	$\begin{aligned} & \hline V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.10) } \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.11) } \\ & \hline \end{aligned}$
I_{CC}	quiescent supply current			$\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$		$\begin{aligned} & \hline 80.0 \\ & 160.0 \end{aligned}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$

AC CHARACTERISTICS FOR 74HC
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								V_{Cc} (V)	V_{EE} (V)	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & V_{\text {is }} \text { to } V_{\text {os }} \end{aligned}$		$\begin{aligned} & \hline 15 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 18 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{os}		$\begin{aligned} & 60 \\ & 20 \\ & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 220 \\ & 44 \\ & 37 \\ & 31 \end{aligned}$		$\begin{aligned} & \hline 275 \\ & 55 \\ & 47 \\ & 39 \end{aligned}$		$\begin{array}{\|l} \hline 330 \\ 66 \\ 56 \\ 47 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time S_{n} to $V_{\text {os }}$		$\begin{aligned} & 75 \\ & 25 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 220 \\ & 44 \\ & 37 \\ & 31 \end{aligned}$		$\begin{array}{\|l} \hline 275 \\ 55 \\ 47 \\ 39 \end{array}$		$\begin{array}{\|l} \hline 330 \\ 66 \\ 56 \\ 47 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}$ to V_{os}		$\begin{aligned} & 63 \\ & 21 \\ & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 210 \\ & 42 \\ & 36 \\ & 29 \end{aligned}$		$\begin{aligned} & 265 \\ & 53 \\ & 45 \\ & 36 \end{aligned}$		$\begin{aligned} & 315 \\ & 63 \\ & 54 \\ & 44 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } \\ & 20 \text { and } 21 \text {) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time S_{n} to $V_{\text {os }}$		$\begin{aligned} & 60 \\ & 20 \\ & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 210 \\ & 42 \\ & 36 \\ & 29 \end{aligned}$		$\begin{array}{\|l} \hline 265 \\ 53 \\ 45 \\ 36 \end{array}$		$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \\ & 44 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \end{aligned}$

Triple 2-channel analog

 multiplexer/demultiplexer
74HC/HCT4053

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HCT								$V_{c c}$ (V)	V_{EE} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
VIL	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or VIL	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}} \mid= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ \text { Fig. } 10 \end{array}$
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{I L}$	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { Fig. } 10 \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{gathered} \hline \mathrm{V}_{\mathrm{S}} \mid= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \end{gathered}$ $\text { Fig. } 11$
I_{CC}	quiescent supply current			$\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & -5.0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \\ & \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current ($\Delta \mathrm{I}_{\mathrm{CC}}$) for a unit load of 1 is given here. To determine $\Delta \mathrm{l}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\frac{S_{n}}{\mathrm{E}}$	0.50

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC CHARACTERISTICS FOR 74HCT
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right) \\ \hline 74 \mathrm{HCT} \end{gathered}$							UNIT	TEST CONDITIONS		
									$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \text { (V) } \end{aligned}$	OTHER	
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
tPHL/ $\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & \mathrm{V}_{\text {is }} \text { to } \mathrm{V}_{o s} \end{aligned}$		$\begin{array}{\|l\|} \hline 5 \\ 4 \end{array}$	$\begin{aligned} & \hline 12 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 15 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 18 \\ & 12 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tPzH/ ${ }^{\text {PZL }}$	$\begin{aligned} & \text { turn "ON" time } \\ & \overline{\mathrm{E}} \text { to } \mathrm{V}^{\prime} \text {. } \end{aligned}$		$\begin{aligned} & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 48 \\ & 34 \end{aligned}$		$\begin{aligned} & 60 \\ & 43 \end{aligned}$		$\begin{aligned} & 72 \\ & 51 \end{aligned}$	ns	$\begin{array}{l\|} \hline 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \\ & \hline \end{aligned}$
tPzH/ $\mathrm{t}_{\text {PZL }}$	$\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 34 \end{aligned}$		$\begin{aligned} & 60 \\ & 43 \end{aligned}$		$\begin{aligned} & 72 \\ & 51 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 24 \\ & 15 \end{aligned}$	$\begin{aligned} & 44 \\ & 31 \end{aligned}$		$\begin{aligned} & 55 \\ & 39 \end{aligned}$		$\begin{aligned} & \hline 66 \\ & 47 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } \\ & 20 \text { and 21) } \\ & \hline \end{aligned}$
tehz/ tpLZ	$\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & \hline 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 44 \\ & 31 \end{aligned}$		$\begin{aligned} & 55 \\ & 39 \end{aligned}$		$\begin{array}{\|l\|} \hline 66 \\ 47 \end{array}$	ns	$\begin{array}{l\|} \hline 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } \\ & 20 \text { and 21) } \\ & \hline \end{aligned}$

Triple 2-channel analog multiplexer/demultiplexer

Fig. 8 Test circuit for measuring R_{ON}.

Fig. 9 Typical R R_{ON} as a function of input voltage $V_{\text {is }}$ for $V_{\text {is }}=0$ to $V_{C C}-V_{E E}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	$V_{c c}$ (V)	V_{EE} (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.04 \\ & 0.02 \end{aligned}$	$\begin{array}{\|l\|} \hline \% \\ \% \\ \hline \end{array}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	sine-wave distortion $f=10 \mathrm{kHz}$	$\begin{aligned} & 0.12 \\ & 0.06 \end{aligned}$	$\begin{array}{\|l\|} \hline \% \\ \% \end{array}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 14 \text {) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \text { see (Fig. } 12 \text { and 15) } \end{aligned}$
	crosstalk between any two switches/ multiplexers	$\begin{aligned} & \hline-60 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Fig. } 16 \text {) } \end{aligned}$
$\mathrm{V}_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$		$\begin{aligned} & R_{\mathrm{L}}=600 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz}\left(\overline{\mathrm{E}} \text { or } \mathrm{S}_{\mathrm{n}},\right. \end{aligned}$ square-wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (see Fig.17)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 d B)$	$\begin{aligned} & 160 \\ & 170 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	note 2	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \text { (see Fig. } 13 \text { and 14) } \end{aligned}$
$\mathrm{C}_{\text {S }}$	```maximum switch capacitance independent (Y) common (Z)```	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$				

Notes to the AC characteristics

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at V_{OS} for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

General note

$\mathrm{V}_{\text {is }}$ is the input voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an input.
$\mathrm{V}_{\text {os }}$ is the output voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an output

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; GND $=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 12 Typical switch "OFF" signal feed-through as a function of frequency.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; GND $=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Fig. 16 Test circuits for measuring crosstalk between any two switches/multiplexers.

The crosstalk is defined as follows (oscilloscope output):

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC WAVEFORMS

Fig. 18 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\text {os }}\right)$ propagation delays.

Triple 2-channel analog multiplexer/demultiplexer

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {IS }}$
$\mathrm{t}_{\text {PZH }}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\text {PLZ }}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
74 HC	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T}=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint to t_{r}, t_{f} with 50% duty factor.

Fig. 20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {IS }}$	FAMILY	AMPLITUDE	V_{M}	$t_{r} ; \mathrm{t}_{\mathrm{f}}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$				$f_{\text {max }}$; PULSE WIDTH	OTHER
$t_{\text {PHZ }}$ tpLZ others	$V_{E E}$ $V_{C C}$ open	$V_{C C}$ $V_{E E}$ pulse	$\begin{aligned} & 74 \mathrm{HC} \\ & 74 \mathrm{HCT} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \% \\ & 1.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <2 \mathrm{~ns} \\ & <2 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~ns} \\ & 6 \mathrm{~ns} \end{aligned}$

$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T}=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint to t_{r}, t_{f} with 50% duty factor.

Fig. 21 Input pulse definitions.

Triple 2-channel analog
74HC/HCT4053

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

